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We consider the problem of excitation of mechanical oscillations in linear oscillatory sys-
tems. We show that the solution obtained by the method of small parameter for the case when
resonance is absent in the oscillating system, can be used to find the resonant oscillations.
We also propose a generalization of the Malkin-Shimanov theorem on periodic solutions of
quasilinear systems of ordinary differential equations ([1], Chapt. 2, Section 9) extending
this theorem to the problems of excitation of oscillations in the systems with distributed
parameters.

1. When an oscillating system exhibits displacements which are small compared with

the characteristic dimension of the exciter {such are the problems of dynamics of systems
with mechanical vibrators [2 to 4]), then the equations of the problems of excitation of mech-
anical oscillations contain a small parameter and can therefore be written as

¢ =0, t)+pd (9,88, 8,1 n),

m
Mu" 4 yBu + Cu=f[ 2 O (@ @), + b | (1.1)
Te=l -

Here & = {y,ensy b)) is & vector whose components are used to describe the work (mo-
tion) of the exciters, u is a N~dimensional vector or an element of a Hilbert space H charac~
terizing the configuration of the oscillatory system; M, B and C are N X N matrices whose
components either are time-independent or are linear operators in H; gy ,u1es gy, are either
given constant vectors or elements of H describing the distribution of forces generated by
the exciters over the system; &= (£ 00y £.) €, = (u, ¢.), r = 1,00, m; a bracket denotes a
scalar product and f, ¥ > 0 and ¢z > 0 are scalar parameters, the last of which is assumed
to be sufficiently small.

Equations of the problem of excitation of mechanical oscillations can be reduced to (1.1)
also in some of the cases when the displacements indicated above are of the order of the
typical dimension of the exciters. Problems on the oscillations generated by electromagnets
[Sf are an example of such a case.

We assume that the terms of equations of motion which describe the feedback effect of
the generated oscillations on the exciters and which enter 3{(db, £,...), are not direct funce
tions of the coordinate u. They depend on the magnitudes fl,..., 'n Which shall be called
the *“feedback parameters’’. This can be explained by the fact that the physical interpreta~
tion of £,,..., £, and the form of @ and Q, are usually independent of the form assumed by
the oscillating system and of the method of introduction of the coordinate u. The latter only
define the vectors q.. In the case of electromagnets, the distances between their armatures
and cores [3] become the feedback parameters, while in the case of mechanical vibrators,
the displacements of their axes {4].
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In this paper we shall consider the case for nonsself-contained systems only, although
our arguments shall also be valid in the case of seli~contained systems. The right-hand
sides of Fgs. (1.1) are assumed to be 27-periodic in time, which enters the equations ex-
plicitly. Usual assumptions {1} about their smoothness are made, and we consider 27 -perio-
dic solutions.

When oscillations appear in & linear oscillatory system under the action of an exciter,
we must consider two cases, resonant and nonresonant, separately. They will correspond
to different properties of the solution of the problem on the forced oscillations of the oscil-
Jatory system when the drivind forces are given. Let us consider the case, when an applied
load is 27m-periodic and distributed over the system according to the law defined in the
terms of one of the vectors g,

Mu,” + yBu, + Cu, = F ()¢, (1.2)

We shall calculate the feedback parameters &,y ,evr, £, for the 2m-periodic solution of
this equation. When the system is nonresonant then we should have, for any sufficiently
smooth F(t), ®,, = (max | fn D)t (max iF(t)f) =0(1) forr, s = 1,..., m. In the resonant case
%, =0(1/u) for at least one pair of values 7, s. Moreover, in accordance with the physical
demands of the problem the parameter f should, in the nonresonant case, be not small i.e.
[= Q(1), while in the resonant case f= O(u). Let us now assume that the given 27 -periodic

solutions

q)(O) == ¢(0) (ts (l), CP(O}: (Wl(o)! seey (pk(o))v a = (alr“'y 0‘)')

of the system

07 = D (9@, 1) (1.3)
form a family with j constants & y,..., @; (the case of an isolated generating solution is of
little interest in the study of forced oscillations; we should also note that, when the oscil-
latory forces are small, then only the generating solution needs to be determined [4]). Let
us suppose as well that 277 -periodic solutions zy; yueey gy (i = Luee, j) of & system conju-
gate to the system (1.4)

. o0,
Zp+ Pl A Pt = 0 B=1,...,.n), P, = (E‘E) (r, B=1,...,k)

written in the terms of variations of (1.3) are known, and that there are exactly j solutions.
We shall utilize the fact that the functions @, ® and Q, depend only on properties of the ex=
citers, and not on the form of the oscillating system. Then, expressions for the parameters
of the generating solution @ ,..., Q; and driving forces Q.® computed in accordance with
the generating solution as well as the stability conditions, can be presented for the non-
resonant case solely in the terms of components of the amplitude and phase frequency mat-
rix characteristics of the oscillating system. This can be done as follows.

Inserting (1.3) into Q,{¢, ¢°) and expanding the latter into trigonometric polynomials
{as in [4 and 5]) or (in the general case) into the Fourier series, we obtain

O (t, a) = 2 Q9 (@) cos (vt — B, (2)) r=1,...,m (1.5)

)

Let us now introduce the matrices Ky = ||k ,*®]| and ¥y = |/ ,\*)| defining the ampli-
tudes and phase shifts of the feedback parameters when the oscillations generated by known
unit harmonic forces of frequency v, are steady. Magnitudes & (") and /,,("*} are given by

B =k cos (vt — ), B =(ul, q,) (1.6)
where u,(") are 2r /i -periodic solutions of
M 4+ 7Bu™ + Cu = coswvig, 1.7

Let us now write the expressions for the feedback parameters. It ia
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B = 3 209 () &7 cos (vt — By (@) —9)  (s=1,...m) (1.8)

r=1 v
They are computed from the generating solution and contain the components of the mat-
rices Ky, and \V,, as parameters.
Further, inserting (1.3) and (1.8) into small parts of the first & Eqs. of (1.1) (the result-
ing vector is denoted here by 90) and setting up the equations defining the parameters of
the generating solution in the usual [1] manner, we obtain j equations

Pi(Ogy .-y Oy Ky Wy, )= i=1...7 1.9)
27'! x

E'zi—n \ Zeoﬁ(tval’ TR -stvs \Fvv .. -)zBi(t’d'h .. -ad‘j)dt =0
0 =1

where v assumes either all or some of the values which it takes in (1.5).

Next we obtain the parameters a; = a; %, a; =q * which form the solution of (1.9)
in terms of the components of K,, and 'P,,, substitute them into (1.5), This yields the rela-
tions

a =i (.. Ko Wy l)  (i=1,...0) (1.10)
E =5t .. 0 Ky F..)y, QO =00(t...,fK, F\,..) (r=1,....m)

defining the oscillations generated by the given exciters in any linear oscillating system,
provided that the matrices K,, and 'V, are found for this system for all v appearing in (1.9).
This is equivalent to solving a problem on forced oscillations (the corresponding problem
on svnchronization of mechanical vibrators was dealt with in [4], while the oscillations
generated by electromagnets were investigated in [5]). It now remains to show that the re-
lations obtained can also be used in the resonant case.

2. Matrices K,, and ¥, can be obtained for both, oscillating systems with a finite num-
ber of degrees of freedom and for the systems with distributed parameters, and for this rea=~
son the above method of reducing the problem on the excitation of oscillations to the prob-
lem on forced oscillations embraces, formally, both types of systems. In the cases however,
when the oscillating system falls into the pattern characteristic of the system with distri-
buted parameters, a question arises whether periodic solutions of (1.1) exist and, whether
the sequence of approximations usually present in the method of small parameter, conver-
ges to them. In this connection we may find useful the following simple generalization of a
theorem first proved by Malkin and later, more vigorously, by Shimanov 1, Chapt. 2, Sec-
tion 9).

Let us assume that the state of the given physical system is defined by an element u of
the linear space U and let m linear functionals &, ),..., £, (u) be also defined on U. Let
also the periodic solution of equations of motion of the system acted upon by given perio-
dic forces (these equations may be partial differential equations, equations with time delay
e.a.) generate a correspondence between m given 27-periodic functions F,(t),..., F_ (8
{(which can be interpreted as loads) and a 27 <periodic function u(t), the correspondence be-
ing assumed linear. We shall denote this by u(t) < (F,(t),..., F {¢)). Finally let us assume
that the 2m-periodic function u(¢) exists and is continuous for any 27 -periodic functions
F ,..., F_, possessing a continuous first order derivative (*).

Following [6] we shall say that the system possessing the above properties has a ‘“‘weak
generalized filter property on the class of functions possessing continuous first order deri-
vatives”, if for any F(t) belonging to this class the following inequalities hold

*) Periodic solutions of the problem on forced vibrations of oscillating systems which are
of some practical interest, have been obtained for a much wider class of loads. The re-
striction imposed here is due to the same reasons which caused the author of [1] to lim-
it himself to small order terms in the system studied in Section 9, Chapt. 2 of[l].
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max; | & (up () | < B,y maxy | F(2) | (ro s=1,....m) 2.1)
up (8} « (0,....F, () = F{1),...,0), hy >0

where h,, are constants. L.et us consider the system
(p"= 2,9 +...+ aakq>k+ n, (t) +p.88 (Pyr -+ 0 Ppr El’ coey Em' t, B (s=1, ...,k
u (t) hand (Ql(q’lv LY (Pk)v ey Qm (‘Pla voeny (Pk))! 51351 (u)- e ey Em= Em (u) (22)
where u(t) corresponds to the system possessing the filter property defined above. We shall
assume that the functions Ql'"" Q,, are defined on some region G of the space of variables
Dyreons ¢, and, that they have continuous second order derivatives in all their arguments in
this region. Assumptions concerning the smoothness of remaining functions shall be those
used in 1], Chapt. 2, Section 9 (with f, assumed equal to qS.) and the closed domain of
definition of @, belonging to the space of variables ¢ ,..., By, tfl,..., £, shall be denoted
by G,; functions 7, and @, shall be assumed 2m-periodic in ¢ which appears in them ex-
plicitly, and we shall assume that the system

0 =a, 0, +. . . +a,0 0+ (=1 ..58 (2.3
admits a family of 27 -periodic solutions with j constants

@, =0, t, &, ..., @) (2.4)

(relevant demands on the coefficients of (2.3} and 7,(¢} and on the form of solutions are
given in 1], Chapt. 2, Section 4). Let us now construct a system of Egs. (2.5)

b
3= 1 () © g () —
Pi(u ... “’)Zi?t"'(g ;_‘,lea @ - 90 B, L E 1, 0) 55 (At =0
=1, ...7)

5O - 2) =& @O @) w00 — (@@, ) Q@ 9D

where the functions 15,{8 = L, &; i = 1,u.., j) form of set of j periodic solutions of a
system conjugate to the homogeneous system obtained from (2.3) by putting 7,(¢) = 0.
Then the following generalization of the theorem eppearing in Section 9, Chapt. 2 of [1
can be given,
Let the system (2.5) admit the following simple solution:
oy =y®, ..., aj=0a;*
such that

o2 .. .06 9O .., g0 . £ eG, whent>0

‘PIO(O) — 'PI(O)  * ... a;*) etc.

Then for 0 < .ty where 1y is a constant, the system (2.2) admits a 27 -periodic solu-
tion such that the corresponding functions @ (&, 1t)yeees 88, 1), &,(8, )seee, £, (8, ) re-
main in G and G, when t . 0, become ¢, (O (8),..., £,(0) (1) when = 0, and such, that the
sequences of 27 -periodic functions ¢ 1(1«"’ (6 heoss E5P (&, ) {p= 1, 2) defined by the
following Eqs.

0 =a,0,7 +. . +a,9," +m, () + (2.8)
-+ peg (q’l(pal)» e P (9—1)' El‘pn‘)' v angp.l)’ tw =1 ..., k)

ul® - (Q1 (%Ga)' e q;k(o)), e Qp (le' e q,k(p)))

converge uniformly to the solution @, (8, 11 )yeee, & (8 )

The proof of the above mentioned theorem will suffice here (it is fairly complex, since
the values of the constants appearing in it must be estimated at each stage of the proof);
we must however construct the inequalities connecting |£(A — £,(P-1)| with |p (A ~
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— D PV | .., |y (P ®{P=1| in order to obtain all the necessary estimates. This is
possible, since by (2.1) the values of |£,(® — £,(P=1)| can be estimated from

Qs (@1, « oo oY —Q, (@Y, ..., ") (s=1,...,m)
while the remaining magnitudes are estimated by
19, —q ) (r=1,..,k
utilising the Lipshits conditions for Q,.

If U has a bound, then we can, in a number of cases, show also that the sequence u(?)
converges to the solution.

Such theorems make it possible to extend the results obtained .when the small parameter
method is applied to systems possessing a finite number of degrees of freedom, to the case
of systems possessing the filter property elucidated above. Rozenvasser obtained in {6} a
number of such results for various approximate methods of determination of periodic solu-
tions, while studying the corresponding integhal equations, Our assertion given above
shows, that in this sense the method of small parameter in the case of a family of genera-
ting solutions, is no exception.

3. The process described in Section 1 by which the solution of the problem on excita=
tion of oscillations is reduced to constructing the relations (1.10) and solving the problem
on forced oscillationsy cannot be applied to the resonant case. A special resonant proce-
dure, which follows, is required in this case to obtain the periodic solutions. We shall con~
fine ourselves to oscillating systems with a finite number of degrees of freedom. From the
previous assumptions it follows that, for the oscillating systems considered in the resonant
case, the following relations are valid

M= M, 4 pdM,, C =Cy+pcC,, y=pg [=ph (3.1)
where the matrices My and Cy are such, that the polynomials
An (A} = det || C, — AM, || (3.2)

has a number of roots, all of which have values equal to the squares of natural numbers.
The system (1.1) will thus become

=0 ) +p6p &, 8,8, tp (3.3)

m
Mou" + Cot = — p,[dMlu' 4+ gBu' + cCiu—fy 2 Q. (9, 9) Qr] 4+ ...
r=1

We further assume that at least one of the numbers d, ¢ and g is different from zero;
the case d = ¢ = g = 0 corresponds to the oscillating system without friction tuned exactly
to the resonant frequency, and is not of interest.

Let the polynomial Ay{A) have 4 roots v, 2,..., 11,2, their values equal to the squares
of natural numbers {each of them counted the number of times equal to their multiplicity)
and let the remaining N ~ A roots differ from the squares of natural numbers by magnitudes
of the order of unitu.

We shall assume that the matrices M, M,,, C, C and B are symmetric, C, C, and B are
nonnegative, while ¥ and M, are positive definite;.these assumptions are compatible with
the requirements imposed by the physical demands of the problem.

Then, 277 -periodic solutions of the generating system obtained from (3.3) by putting it =
= 0, will form a family with j + 2k constents Gipver Oy s Aygoeves Ay s Dygsecsy Dy« These
solutions will be of the fom * *

[

x n
Q0 = @l (¢, a), u® = 3 S (Ane €08 Vpt + Dposinvpt) un,  (3.4)
na=} p==i
where p denotes the multiplicity of the root A =1, ? of the polynomial Ap(A); x is the
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number of different roots of the given type and, obvicusly, p, + . 4+ p, = k. We should

note that under these assumptions the multiple roots of Ap{A) have the corresponding line-
ar elementary divisors [7], while the eigenvectors u;, sesspelbup o Bpyy seees Uy where the
last ¥ — h vectors correspond to the roots differing from the squares of natural numbers,
form the basis on the configurational space of the oscillating system. This basis is assumed
to be orthonormalised, in the sense that

(Mou,, ux) = Bpx (3.5)
where u, and uy are any two eigenvectors and pr is the Kronecker delta.

First j equations defining the parameters of the generating resonant solution are cons-
tructed analogously to {1.9). They have the form

P;(aly ooy Ay Allq LR ] Axoxv Dllv ey Dxpx) = (i= 1... ~qu-) (3'(")
3 )
1 .
= (S 6t an .. a5 A - Aus Dityeves Dag) 251 (8, ey 25) d=0
of=1

where @, g* are the components of the vector @ (), £, &0, £(0)7, 4, 0); and the feed-
back vector £(0) appearing here should be obtained as a function of the following constants,
Aygreess Dxp, in accordance with the relations L0 = u®, g,) from (3.4).

The remaining 2h equations are obtained from the condition that the forms of the cosine
and sine frequency components v,{n = 1,..., %) of the right-hand side of the second Eq. of
(3.3) should be orthogonal to all eigenvectors u_,,eesy np, corresponding to the value v, 2.
We shall write these equations (assuming that all v, (n = 1,..., %) enter (1.5); the terms con-
taining v, and not appearing in (1.5), will simply not appear in (3.4)) in the form

P5+n+9 (c‘h < oey Oy Anl’ vy Anpn: Dnh ey D“"n) =

pﬂ
= 2 [((ccl - Vng d‘Ml) Unp, unp) AnB + g¥a (Buﬂﬁi unp) DﬂS] -
R=1
—h 2 QR (01, - .., 3 c08 By (0, -+ s %) (grs Une) =0
r=1

L]
Pj+n+p(111 ey @y Anlv vy A'nanv Dnly ey Drwn) =
¢

= Y [— gV (Buns, Unp) Ans + ((¢C — vp2 M) Ung, Uno) Drg] —
g=1
— fy Z‘J Q(,?.’n (@1y -« oy 25)Sindry (o, . . oy %) (4ry Uno) = 0
r=1

(e=1,...ppin=1,...,% (3.7)

The resonant procedure consists of constructing Eqs. (3.6) and (3.7), obtaining from them
the parameters of the generating solution, etc.

We shall now consider an oscillating system characterized by a certain number of para-
meters (masses, rigidities, coefficients of friction etc.). We shall describe as resonant that
part of the parametric space, in which (3.1} hold, and as nonresonant — that, in which the
nonresonant assumptions given in Section 1 are valid. We shall write the matrices M and C
as

M == MO + 6M11 c = Co + Ocl (3.8)

The relations (1.10) hold in the nonresonant region

=i oK W) =10 (3.9)
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We note that the matrices K, and 'I',, exist also at some points of the resonant region
when 4 is sufficiently amall (the case of d = ¢ = g = 0 ia excluded) and in this case we
have k¢ = O (1/u) and ﬂ:q;:) = 0 (1), Let us select a point in the resonant region and as-
sume that functions Q,* are defined on some part of the space of their arguments and are
continuous on it over the whole aet. Let us also assume that the magnitudes ﬂ;,ﬁ"’ (n=
= lyeea, ®;# 8= 1,0eey m) computed for the given point (in which f= uf,, o= ptc, 8 = ud,

y = 11 g) belong to the region of definition of @*. We shall determine a,* at the point in ques-
tion of the resonant region using the relations (3.9).

Next we shall show that the magnitudes @ * thus defined, are connected with the magnit-
udes @** obtained for the given point of the resonant region from the relations (3.6) and
(3.7), by

at =i+ O =1 (3.10)
With this purpose in mind, we shall consider the equation of forced oscillations of an
oscillating system where the oscillations are excited by a load computed according to the
generating solution for some & ,,..., @,

Muo™ 4 yBu' + Cu = 3} Q. (99 (¢, @) 4, (3.11)

r=t

Eq. {(3.11) admits a 2m-periodic solution at any poiat of the nonresonant region. We shall
seek it in the form

m
u® = D@l cosvt + u® sin vt) (3.12)
r=1 v
Fourier coefficients uv({) and u,,g')

(C—v*M)ul} + yvBul) = Q¥ cos B g,

are obtained, in accordance with (1.5), from

—qvBul) + (C —v*M)uly = fQV) sin ¥, q, (3.13)
We shall seek the solution of (3.13) in the form of series in terms of the vectors ugy,...,
Yoy * Bhyy oeens Uy (3.14)
x Py N % Pn N
ufl = 3 Ao Pun 4+ 3 ou,  wl = D) Dl un + D vl
n=y p=1 l==h+1 n=1 p=1 t=h-+1

which is possible, since these vectors form a basis in the configurational space of the os-
cillating system.
The following system of 2N linear algebraic equations yields the coefficients of (3.14):
x Py
DDV (€ — VM) ting, 1g) 050 + Y (Buugg, ug) wie®] +  (3.15)

ne=} p=1

N
+ 2 [(C—v"M)yul, u) vk} + vy (Buy, u,) wl] — Q9 cos 8., (g, ttg) = 0
lz=h4-1

x Py
2 2 [— VY (B, u4) V50 ® + ((C — VM) g, un) win™] +

n=1 p=1

N
, . . ) i
+ 2 = (Buy, ua) o) 4 (€ — VM) wy, u) wil] — fQN sind,, (g, u)=0
le==t41
Here u4) is an eigenvector and Egs. (3.15) are constructed for each of the N vectors
Bygeeses Uppy sess Uy seese Upp
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All the systems of Egs. (3.15) can be solved in the nonresonant region. If, for some
particular point of this region, we use them to obtain v,\™” and w(™* as functions of
Gysessy Oy, Obtain & solution of (3.11) from (3.14) and {(3.12), compute for this solution the
feedback parameters, insert them into small order terms of (1.1), take a mean value and find
Q*yeeey 0%, then we shall find that the latter values can be obtained from (3.9), when /X,
and ¥, have values corresponding to the given point. The above systems have solutions at
the previously chosen point of the resonant region, and the described sequence of operations
yields the values of a *,..., a}‘ corresponding to this point.

To see what form is assumed by (3.15) in the resonant region, we put M = M, + udM,,
C=Cy+peC, y=pgand f=pf, and assume that v in (3.15) is equal to some v, belong-
ing to ¥, ,uee, Vx « Taking the orthonommalizing conditions (3.5) into account we obtain:

x PB
2 Z [((cCy—vp?dMy) ug,, uy,) Ui-%;:) + vng (Bugg, uy,,) wg:)l +
Be=1 p=1
N
1
+ Z [((cCy—va* dMy) uy, uy,) Ui("v)n + vag (Buy, uyg,) w(r{,),‘] -
I="41
—h 52.)“ cos 'ﬁnn ;s Up,) = 0 (s=1....,p,) (3.16)
for the values of 7 in (3.15) corresponding to the vectors u, 3,.005 Gy on and
x P8
(Va2 — v op) + p S S ((eCr — va? dMy) ug,, 1) v{r%.:) +
=1 p=1

N
+ vg (Bug,, un) w1 4+ . Z [((cCy—va2dM ) uy, uy) Ui?n +

" ls=h-41

+ vg (Buh u-n_) wf'i)n]} - pfloi?v)n cos ﬁrvn (Qn a'ﬂ) =0 (317}

for the remaining values of 7.
Only the *‘cosine’ equations corresponding to the first Eq. of {(3.15} are given in (3.16)

and (3.17); “‘sine’’ equations have analogous form. All equations corresponding to the val-
ues of V& (Vy,..., Vx) will have the fom of (3.17).
Relations (3.16) and (3.17) yield

, o)
pinf Wt N=0(1)  e=t...ppn=1...%, V" w’=0()

for all remaining values of v and 7. Therefore, from (3.12) and (3.14), after performing the
summation over r, we obtain

x Py
u® = D) N (007 cos vyt 4w ¥ sinvat) e + O (1) (3.18)
T} p==1
Eqgs. {3.16) and the corresponding sine equations, after the summation over 7 {see (3.7)),
yield
;1 . . 8
Piinge(ar, .. pay oV, oo Y, w ) 40 (w) =0

p;+n+p(.)+0(ll)=0 (p=i,.,.,Pn.n=‘l,...,M)

and we finally obtain the following relations:

vs:-’) (“17 e aJ') == AM (alv LAY | dj) + 0("‘)’ w(ﬂ.o) (' * ') = D"‘P(' " ') (3‘20)

n

(3.19)

This proves the following. If we use the nonresonant procedure for a point belonging to
the resonant region to obtain the feedback parameters as functions of @, ,..., @, with the
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accuracy of the order of the small parameter, the result will be identical to that obtained,
when the feedback parameters are computed according to the second Eq. of (3.4) in which
Ap ok Qypesns a,) and D, fay,eee, @,) are obtained from (3.7). In other words, if the feedback
k. (*®) and phase i/ ,(*®) coefficients are computed for a point belonging to the resonant re-
gion and the relations (1.10) are used disregarding the fact that k,, (**) = O/(1/u), then the
resulting magnitudes o *,e.., a.l‘ will coincide (with the accuracy of the order of @) with
the magnitades a **,..., @ #* obtained by means of the resonant procedure. This shows the
correctness of (3.10) and it was established that (1,10) may be also applied to the resonant
case.

Converse procedure — use of the resonant solution to determine nonresonant oscillstions,
is equivalent to retaining in the expansion of the solution of (3.12) into a Fourier series
and in the expansions of the coefficients in terma of the eigenvectors uy only those terms,
which bring a contribution of the order of unity into the initial resonant region, snd neglec-
ting the remaining terms. If (1.5) does not contain the values of ¥ not appearing in (3.4) and
the vectors g, are linear combinations of the vectors u,, , {the latter is obviously necessary
for an oscillating system with one degree of freedom), then the resonant generating solution
will coincide with the nonresonant one everywhere.

From this we can infer, that, if we only wish to construct a solution, then, for a system
of the type of (1.1) the resonant case need not be considered separately. Comparison of the
conditions of stability fn both cases becomes interesting in this context. Let us take, for
example, the problem of oscillations generated by a rotating unbalanced body. Conditions
of stability obtained in [4] upon considering the vibrator as an almost conservative object
and under nonresonant assumptions, coincide with the corresponding condition obtained by
Kononenko in [ 3] by, what is in fact, a resonsnt procedure.

BIBLIOGRAPHY

1. Malkin, I.G., Some Problems in the Theory of Nonlinear Oscillatiogs. M., Gostekhizdat,
1956.

2. Blekhman, I.I., The problem of synchronization of dynamic systems. PMM, Vol. 28, No.
2, 1964.

3. Kononenko, V.0., Oscillating Systems with Limited Excitation, M., Nauka, 1964.

4. Khodzhaev, K.Sh., Synchronization of mechanical vibrators connected with a linear os=
cillating system, Inzh. zh., MTT, No. 4, 1967.

5. Khodzhaev, K.Sh., Oscillations in a system containing several electromagnetic exciters.
Inzh. zh., MTT, No. 2, 1966.

6. Rozenvasser, E.N., Use of Integral Equations in Constructing and Substantiation of an
Approximate Method for Determination of Periodic Motions of Nonlinear Systems. Pro-
ceedings of the International Symposium on Nonlinear Oscillations, Vol. 1, Kiev, Izd.
Akad. Nauk USSR, 1953.

7. Gantmakher, F.R., Matrix Theory. M., Gostekhizdat, 1953.

Translated by L.K.



